
A Fast Algorithm for Computing a Longest Common Increasing

Subsequence

I-Hsuan Yang1, Chien-Pin Huang1, and Kun-Mao Chao1,2,∗

1Department of Computer Science and Information Engineering

2Institute of Networking and Multimedia

National Taiwan University, Taipei, Taiwan.

October 17, 2004

Abstract

Let A = 〈a1, a2, . . . , am〉 and B = 〈b1, b2, . . . , bn〉 be two sequences, where each pair of elements in the

sequences is comparable. A common increasing subsequence of A and B is a subsequence 〈ai1 = bj1 , ai2 =

bj2 , . . . , ail
= bjl

〉, where i1 < i2 < · · · < il and j1 < j2 < · · · < jl, such that for all 1 ≤ k < l, we have

aik
< aik+1 . A longest common increasing subsequence of A and B is a common increasing subsequence

of the maximum length. This paper presents an algorithm for delivering a longest common increasing

subsequence in O(mn) time and O(mn) space.

Keywords: Algorithm, computational biology, longest common subsequence, longest increasing subse-

quence.
∗Corresponding author. Email: kmchao@csie.ntu.edu.tw

1



1 Introduction

The longest common subsequence (LCS) problem and the longest increasing subsequence (LIS) problem

are both very classical problems in computer science. By using the dynamic programming technique, the

LCS problem can be solved in O(mn) time. Knuth [3] posed the question of whether a sub-quadratic algo-

rithm for the LCS problem exists. Masek and Paterson [10] gave an algorithm that runs in O(mn/ log n)

time, where n ≤ m and the subsequences are drawn from a set of bounded size. Szymanski [13] proposed

an O((n + m) log(n + m)) algorithm for the special case in which no element appears more than once in

an input sequence. Interested readers can refer to a recent survey by Bergroth et al. [1].

On the other hand, there is a rich history for the longest increasing subsequence problem as well,

e.g., see [6, 11]. Schensted [12] and Knuth [8] gave an O(n log n) time algorithm for this problem where

the input is an arbitrary sequence of n numbers. For a special case in which the input sequence is a

permutation of {1, 2, . . . , n}, Hunt and Szymanski [7], and Bespamyatnikh and Segal [2] gave algorithms

that run in O(n log log n) time.

In this paper, we consider the longest common increasing subsequence (LCIS) problem, whose goal

is to find a maximum-length common subsequence of the two sequences such that the subsequence is

increasing. This problem might arise in the situation where we wish to find the longest set of MUMs

whose sequences occur in ascending order in three or more genomic sequences [4, 5]. Formally speaking,

let A and B be two sequences A = 〈a1, a2, . . . , am〉 and B = 〈b1, b2, . . . , bn〉, where m ≥ n and each

pair of elements in the sequences is comparable. A common increasing subsequence of A and B is a

subsequence 〈ai1 = bj1 , ai2 = bj2 , . . . , ail
= bjl

〉, where i1 < i2 < · · · < il and j1 < j2 < · · · < jl, such

that for all 1 ≤ k < l, we have aik
< aik+1 . A longest common increasing subsequence of A and B is a

common increasing subsequence of the maximum length. A straightforward O(mn2)-time algorithm for

this problem is to sort the shorter sequence, and then find a longest common subsequence among the two

sequences and the sorted sequence. Here we give an algorithm that solves the longest common increasing

subsequence problem in O(mn) time and O(mn) space.

2



2 The Algorithm

This algorithm utilizes a folklore algorithm (See [9] for more details) which runs in O(n log n) time and

O(n) space for the LIS problem. Define an array L[k] to be the smallest ending number of an increasing

subsequence of length k, where 1 ≤ k ≤ n. Assume that each entry in L is initially an infinite value.

For each position, perform a binary search to update L and make a backtracking link to the former

number. The largest k such that L[k] contains non-infinite value is the length of a longest increasing

subsequence. Tracing back from L[k] along with the link we established before will deliver a longest

increasing subsequence. Its running time and space is O(n log n) and O(n), respectively. In this paper,

the array L will be explored between every pair of the prefix substrings of the two sequences. Instead of

using binary search, we use linear search by a given starting point to update the array L.

Let Li
j [k] be the smallest ending number of a longest common increasing subsequence of length k

between the sequences 〈a1, a2, . . . , ai〉 and 〈b1, b2, . . . , bj〉, where 1 ≤ i ≤ m and 1 ≤ j, k ≤ n. In

order to keep the backtracking information, we need two more variables. Specifically, let L indexi
j [k]

(1 ≤ i ≤ m, 1 ≤ j, k ≤ n) record the index pair (x, y) such that Li
j [k] is the element ax and by, and let

Prev[i, j] (1 ≤ i ≤ m, 1 ≤ j ≤ n) record the index pair (x, y) such that there is a link from (i, j) to (x, y).

A link will be made in the function LIS insert and used in the backtracking process.

It can be shown that the difference between arrays Li
j and Li−1

j as well as between Li
j and Li

j−1 is at

most one entry, which will be proved later in Lemma 1. We therefore use a variable χi
j for keeping the

index of the difference between Li
j and Li−1

j as follows.

χi
j =





l if Li
j [l] 6= Li−1

j [l] for some l

−1 if Li
j = Li−1

j

Variable χi
j is used while Li−1

j and Li
j−1 are merged in the mismatch case.

For i ≥ 2 and j ≥ 2, Li
j can be derived from Li−1

j and Li
j−1. There are two cases for computing Li

j :

the match case if ai = bj , and the mismatch case if ai 6= bj . In the match case, we do the following:

Li
j = Insert ai into Li−1

j ,

3



and in the mismatch case, we do the following:

Li
j = merge(Li

j−1, Li−1
j ).

Here, inserting a number into L refers to the process of calling the function LIS insert(L,L index, Prev, a, p, i, j),

which inserts an element a into L, makes a link Prev[i, j] to the former number in L, and returns the

insertion index. Variable p stores the index of the last inserted point, and is used as the starting index

for the next linear search (see Figure 1).

LIS insert(array L, array L index, array Prev, element a, integer p, integer i, integer j)
1. x := p

2. while (L[x] < a) do
3. x := x + 1
4. L[x] := a

5. L index[x] := (i, j)
6. if (x 6= 1) then
7. Prev[i, j] := L index[x− 1]
8. return x

Figure 1: The function LIS insert.

In the merging process, Li
j = merge(Li

j−1, L
i−1
j ) is defined to be for any k ≥ 1, Li

j [k] = min(Li
j−1[k], Li−1

j [k]).

Our algorithm first assigns Li−1
j to Li

j , and then compares Li
j [χ

i
j−1] with Li

j−1[χ
i
j−1]:

Li
j := Li−1

j ,

Li
j [χ

i
j−1] := min{Li

j [χ
i
j−1], L

i
j−1[χ

i
j−1]}.

The resulting Li
j is equal to merge(Li

j−1, L
i−1
j ), which will be proved later.

The algorithm for computing a longest common increasing subsequence is given in Figure 2. One

observation is that after finishing computing Li
j , the array Li−1

j can be discarded. Therefore, all the Lj

in different rows can use the same memory space and thus avoid the time for copying Li−1
j to Li

j . Besides,

χi
j can also be recycled to save space. Thus, Li

j , χi
j , and L indexi

j are denoted by Lj , χ, and L indexj ,

respectively. Once this algorithm reaches line 17 of Figure 2, the last non-infinite element of array Ln

stores the LCIS’s ending number. A longest common increasing subsequence can be delivered by tracing

back along the links.

4



INPUT: Two sequences A = 〈a1, a2, . . . , am〉 and B = 〈b1, b2, . . . , bn〉, where m ≥ n.
//initialization

1. for j = 1 to n do
2. for k = 1 to n do
3. Lj [k] := ∞
4. for j = 1 to m do
5. for k = 1 to n do
6. Prev[j, k] := (−1,−1)

//main program
7. for i = 1 to m do
8. χ := -1, p := 1 //default value
9. for j = 1 to n do
10. if (ai = bj) then //the match case
11. χ, p := LIS insert(Lj , L indexj , P rev, ai, p, i, j) //return the insertion position
12. else //the mismatch case
13. if ((χ 6= −1) and (Lj−1[χ] < Lj [χ])) then
14. Lj [χ] := Lj−1[χ]
15. else
16. χ := −1

//recover a longest common increasing subsequence in reverse order
17. x := the largest x such that Ln[x] 6= ∞ (if x does not exist, print ”NULL” and exit )
18. (y1, y2) := L indexn[x]
19. print ay1

20. while (Prev[y1, y2] 6= (−1,−1)) do
21. (y1, y2) := Prev[y1, y2]
22. print ay1

Figure 2: The algorithm for computing a longest common increasing subsequence.

3 Correctness

Assume that Li−1
j and Li

j−1 keep the correct ending numbers. For convenience, Li
j is first assigned as

Li−1
j , and then combined with Li

j−1. There are two cases: the mismatch case and the match case.

3.1 The mismatch case

In the mismatch case (ai 6= bj), we do the following:

Li
j = merge(Li

j−1, Li−1
j ).

Any common increasing subsequence of length k in the sequences 〈a1, a2, . . . , ai〉 and 〈b1, b2, . . . , bj−1〉

or in the sequences 〈a1, a2, . . . , ai−1〉 and 〈b1, b2, . . . , bj〉 will still exist in the sequences 〈a1, a2, . . . , ai〉

5



and 〈b1, b2, . . . , bj〉. By the definition of Li
j [k], we have to choose the “smallest” one. Moreover, because

ai 6= bj , there will be no more new elements added into the list, which means that a common increas-

ing subsequence of length k will still be a common subsequence of length exactly k in the sequences

〈a1, a2, . . . , ai〉 and 〈b1, b2, . . . , bj〉.

Now, we prove that Li
j computed by our algorithm is the same as merge(Li

j−1, L
i−1
j ).

LEMMA 1. For any i, j > 1 in the dynamic-programming table, there is at most one different entry

between Li
j and Li−1

j (or between Li
j and Li

j−1). If the different entry is Li
j [k], then Li

j [k] < Li−1
j [k] (or

Li
j [k] < Li

j−1[k]).

Proof. Between Li
j and Li−1

j , if ai matches one of the letter in sequence 〈b1, b2, . . . , bj〉, we will insert at

most one ai into Li−1
j and cause at most one entry smaller. Similar arguments hold for Li

j and Li
j−1.

LEMMA 2. For any i, j > 1 in the dynamic-programming table, there are at most two different en-

tries between Li
j−1 and Li−1

j . If there are two differences, then one of them is at index χi
j−1 such that

Li
j−1[χ

i
j−1] < Li−1

j [χi
j−1], and the other difference is at index λ, where Li

j−1[λ] > Li−1
j [λ]. If there is only

one difference, it is at index χi
j−1.

Proof. By Lemma 1, there is at most one different entry between Li−1
j and Li−1

j−1, and if this happens,

let us assume Li−1
j−1[λ] > Li−1

j [λ]. There is also at most one different entry between Li−1
j−1 and Li

j−1, and

if this happens, let us assume Li−1
j−1[χ

i
j−1] > Li

j−1[χ
i
j−1]. If χi

j−1 6= λ, then there are two differences and

the lemma holds. If χi
j−1 = λ, then there is at most one different entry, which is recorded by χi

j−1.

By Lemma 2, while merging Li−1
j with Li

j−1, we need to compare at most two different entries. There

are four cases. First, if Li−1
j−1 = Li

j−1 (i.e., χi
j−1 = −1) and Li−1

j−1 = Li−1
j , then Li−1

j = Li
j−1. So we

have Li
j = Li−1

j = merge(Li
j−1, L

i−1
j ). Second, if Li−1

j−1 = Li
j−1 (i.e., χi

j−1 = −1) and Li−1
j−1 6= Li−1

j where

Li−1
j−1[k] > Li−1

j [k] (Lemma 1), then for all k, Li−1
j [k] ≤ Li−1

j−1[k] = Li
j−1[k]. It follows Li

j = Li−1
j =

merge(Li
j−1, L

i−1
j ). Third, if Li−1

j−1 6= Li
j−1 (i.e., χi

j−1 6= −1) where Li
j−1[χ

i
j−1] < Li−1

j−1[χ
i
j−1] and Li−1

j−1 =

Li−1
j , then for all k 6= χi

j−1, Li−1
j [k] = Li−1

j−1[k] = Li
j−1 and Li

j−1[χ
i
j−1] < Li−1

j−1[χ
i
j−1] = Li−1

j [χi
j−1]. We

set Li
j = Li−1

j and Li
j [χ

i
j−1] = Li

j−1[χ
i
j−1]. Thus Li

j will be equal to merge(Li
j−1, Li−1

j ). Finally, consider

6



the case where Li−1
j−1 6= Li

j−1 (i.e., χi
j−1 6= −1) and Li−1

j−1 6= Li−1
j . If there are one or two different entries

between Li−1
j and Li

j−1, we let Li
j = Li−1

j and Li
j [χ

i
j−1] = min(Li

j−1[χ
i
j−1], L

i−1
j [χi

j−1]). By Lemma 2, Li
j

is equal to merge(Li
j−1, L

i−1
j ). If there is no different entry between Li−1

j and Li
j−1, then Li

j−1 = Li−1
j .

Consequently, Li
j = Li−1

j = merge(Li
j−1, L

i−1
j ).

3.2 The match case

In the match case (ai = bj), we do the following:

Li
j = Insert ai into Li−1

j .

For the two sequences 〈a1, a2, . . . , ai〉 and 〈b1, b2, . . . , bj〉, ai = bj is the last “common” element. That

means that it can be added to any common increasing subsequence with ending number smaller than ai.

Thus, inserting ai into Li−1
j will maintain the invariance of Li

j . Whether ai is already in Li−1
j or not, the

resulting Li
j is correct because the insertion process will do nothing if the element is already in it.

LEMMA 3. In the same row Li, the indices p of all insertion points are non-decreasing from the index

j = 1 to j = n.

Proof. Observe that, in the same row, every element to be inserted is equal to ai. For all k ≥ 1, from Li
1

to Li
n, by Lemma 1, each change between Li

j [k] and Li
j+1[k] is always decreasing. Assume that the index

of the last insertion point of Li
j is p1, it follows Li

j [1], Li
j [2], ..., Li

j [p1− 1] are smaller than ai. In the next

match case, this property still holds. Thus, the insertion point will not be in the range of 1 to p1− 1.

Lemma 3 implies that we can perform linear search from the previously recorded index p.

4 Time and space complexity

There are two loops in the algorithm of Figure 2: an inner loop for j = 1 to n (Line 9) and an outer

loop for i = 1 to m (Line 7). During each execution of the outer loop body (the same index i), there are

n steps with two cases: mismatch and match. In the mismatch case, only one comparison is required. In

the match case, the procedure LIS insert will do linear search from p to the insertion point and update

7



p. By Lemma 3, p is non-decreasing for each outer loop, and 1 ≤ p ≤ n. Therefore, for each outer loop,

it takes O(n) time. The overall time complexity is O(mn).

As Figure 2 shows, for all 1 ≤ i ≤ m, Li
j and L indexi

j share the memory space Lj and L indexi
j ,

respectively, and thus requires O(n2) space. Variables Prev[i, j] are used for the range 1 ≤ i ≤ m,

1 ≤ j ≤ n, which would require O(mn) space. It follows that this algorithm runs in O(mn) space.

5 Discussion

We presented an algorithm for computing a longest common increasing subsequence in quadratic time.

Can one do it in sub-quadratic time?

Acknowledgements. We thank the reviewers for their helpful comments that improve the presentation

of the paper. Kun-Mao Chao was supported in part by an NSC grant 92-2213-E-002-073 from the

National Science Council, Taiwan.

References

[1] Bergroth, L., Hakonen, H, Raita, T., “ A survey of longest common subsequence algorithms,”

Proceedings of the Seventh International Symposium on String Processing Information Retrieval

(SPIRE’00), Spain, 2000, 39-48.

[2] Bespamyatnikh, S. and Segal, M., “Enumerating longest increasing subsequences and patience sort-

ing,” Information Processing Letters, 76(2000) 7-11.

[3] Chvatal, V., and Klarner, D.A. and Knuth, D.E., “Selected combinatorial research problems,” Tech-

nical Report, STAN-CS-72-292, Computer Science Department, Stanford University, 1972.

[4] Delcher, A.L., Kasif, S., Fleischmann, R.D., Peterson, J., White, O., and Salzberg, S.L., “Alignment

of whole genomes,” Nucleic Acids Research 27(1999) 2369-2376.

[5] Delcher, A.L., Phillippy, A., Carlton, J., and Salzberg, S.L., “Fast algorithms for large-scale genome

alignment and comparison,” Nucleic Acids Research 30(2002) 2478-2483.

8



[6] Fredman, M.L.,“On computing the length of longest increasing subsequences,” Discr. Math. 11(1975)

29-35.

[7] Hunt, J. and Szymanski, T., “A fast algorithm for computing longest common subsequences,” Comm.

ACM 20(1977) 350-353.

[8] Knuth, D.E., “Sorting and searching,” The art of computer programming, Vol. 3, Addison-Wesley,

Reading, MA, 1973.

[9] Manber, U., Introduction to algorithms – a creative approach, Addison-Wesly, Reading, MA, 1989.

[10] Masek, W.J. and Paterson, M.S., “A faster algorithm computing string edit distances,” Journal of

Computer and System Sciences, 20(1):18-31, 1980.

[11] Matousek, J. and Welzl, E., “Good splitters for counting points in triangles. J.Algorithms 13 (1992),

307-319.

[12] Schensted, C., “Longest increasing and decreasing subsequences,” Canad. J. Math. 13(1961), 179-

191.

[13] Szymanski, T., “A special case of the maximal common subsequence problem,” Technical Report,

TR-170, Computer Science Laboratory, Princeton University, 1975.

9


